Negative Feedback Regulation of FGF Signaling Levels by Pyst1/MKP3 in Chick Embryos

نویسندگان

  • Maxwell C. Eblaghie
  • J.Simon Lunn
  • Robin J. Dickinson
  • Andrea E. Münsterberg
  • Juan-Jose Sanz-Ezquerro
  • Elizabeth R. Farrell
  • Joanne Mathers
  • Stephen M. Keyse
  • Kate Storey
  • Cheryll Tickle
چکیده

BACKGROUND The importance of endogenous antagonists in intracellular signal transduction pathways is becoming increasingly recognized. There is evidence in cultured mammalian cells that Pyst1/MKP3, a dual specificity protein phosphatase, specifically binds to and inactivates ERK1/2 mitogen-activated protein kinases (MAPKs). High-level Pyst1/Mkp3 expression has recently been found at many sites of known FGF signaling in mouse embryos, but the significance of this association and its function are not known. RESULTS We have cloned chicken Pyst1/Mkp3 and show that high-level expression in neural plate correlates with active MAPK. We show that FGF signaling regulates Pyst1 expression in developing neural plate and limb bud by ablating and/or transplanting tissue sources of FGFs and by applying FGF protein or a specific FGFR inhibitor (SU5402). We further show by applying a specific MAP kinase kinase inhibitor (PD184352) that Pyst1 expression is regulated via the MAPK cascade. Overexpression of Pyst1 in chick embryos reduces levels of activated MAPK in neural plate and alters its morphology and retards limb bud outgrowth. CONCLUSIONS Pyst1 is an inducible antagonist of FGF signaling in embryos and acts in a negative feedback loop to regulate the activity of MAPK. Our results demonstrate both the importance of MAPK signaling in neural induction and limb bud outgrowth and the critical role played by dual specificity MAP kinase phosphatases in regulating developmental outcomes in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development.

Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regula...

متن کامل

Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite.

Cells in the early vertebrate somite receive cues from surrounding tissues, which are important for their specification. A number of signalling pathways involved in somite patterning have been described extensively. By contrast, the interactions between cells from different regions within the somite are less well characterised. Here, we demonstrate that myotomally derived FGFs act through the M...

متن کامل

Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis

Mitogen-activated-protein kinase (MAP kinase) cascades are effector mechanisms for many growth factor signals implicated in developmental processes, including appendage outgrowth and organogenesis. The cascade culminates in extracellular-signal-regulated MAP kinase (ERK), which enters the nucleus. ERK activity reflects the competing actions of upstream activator kinases and inhibitory MAP kinas...

متن کامل

A role for MKP3 in axial patterning of the zebrafish embryo.

Fibroblast growth factors (FGFs) are secreted molecules that can activate the RAS/mitogen-activated protein kinase (MAPK) pathway to serve crucial functions during embryogenesis. Through an in situ hybridization screen for genes with restricted expression patterns during early zebrafish development, we identified a group of genes that exhibit similar expression patterns to FGF genes. We report ...

متن کامل

03-P082 Role of Pax6 transcription factor in trigeminal gangliogenesis

naling pathway. For this, we focused on Pea3/Ets (Pea3, Erm, Er81), a subfamily of Ets transcription factors, since it has been suggested that Pea3/Ets is a direct transcriptional target of Fgf signaling. We first checked that Pea3 and Erm are expressed in the midbrain and the hindbrain around stage10 of the chick embryos. We then obtained results that Pea3 and Erm expressions are regulated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003